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Abstract Bootstrap aggregation, or bagging, is a method of reducing the prediction error of
a statistical learner. The goal of bagging is to construct a new learner which is the expectation
of the original learner with respect to the empirical distribution function. In nearly all cases,
the expectation cannot be computed analytically, and bootstrap sampling is used to produce
an approximation. The k-nearest neighbor learners are exceptions to this generalization, and
exact bagging of many k-nearest neighbor learners is straightforward. This article presents
computationally simple and fast formulae for exact bagging of k-nearest neighbor learners
and extends exact bagging methods from the conventional bootstrap sampling (sampling
n observations with replacement from a set of n observations) to bootstrap sub-sampling
schemes (with and without replacement). In addition, a partially exact k-nearest neighbor
regression learner is developed. The article also compares the prediction error associated
with elementary and exact bagging k-nearest neighbor learners, and several other ensemble
methods using a suite of publicly available data sets.
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1 Introduction

A statistical learner is a function that predicts an output variable Y from a concomitant input
vector X. The learner is constructed from a training sample Z = {(X1, Y1), . . . , (Xn,Yn)}
for which both inputs and outputs are observed. This article focuses on k-nearest neigh-
bor learners (Cover and Hart 1967; Ripley 1996; Hastie et al. 2001), a collection of learners
that are conceptually and computationally simple and often rival more sophisticated learners
with respect to prediction error. In this article, the elementary k-nearest neighbor prediction
of Y is defined as a mean over the k-nearest training sample inputs. Training observations
are ordered according to distances between the target input X and the training sample inputs
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X1, . . . ,Xn. Classification problems are accommodated by defining Y to be a multinomial
indicator of class membership. The k-nearest neighbor learner then is an estimator of the
class membership probabilities and the k-nearest neighbor classification rule assigns an un-
labeled observation to the class with the largest estimated probability of membership.

One approach to reducing prediction error in statistical learning problems is to com-
bine many learners constructed from Z as a single ensemble learner. Notable examples are
boosting (Friedman et al. 2000; Freund and Schapire 1997), stacking (Wolpert 1992), and
random forests (Breiman 2001). This article is concerned with a particularly simple ensem-
ble method called bootstrap aggregation, or bagging (Breiman 1996; Hastie et al. 2001;
Skurichina and Duin 1998). The purpose of bagging is to construct a new learner that ap-
proximates the exact bootstrap expectation of the learner. In principle, the exact bootstrap
expectation is computed with respect to the empirical distribution function, an estimate of
the true underlying distribution function from which the sample has been drawn. Generally,
the exact bootstrap expectation of the learner cannot be expressed analytically and a Monte
Carlo algorithm is used to approximate the exact bootstrap expectation. Typically, this is ac-
complished by computing B predictions, each from a learner constructed from a bootstrap
sample drawn randomly and with replacement from the training set. In the case of a quanti-
tative output variable for example, the mean of the B predictions is an approximation of the
exact bootstrap expectation and also the ensemble prediction of the output variable.

The application of bagging to k-nearest neighbor learners is unattractive from a compu-
tational standpoint because for each prediction, each of the B bootstrap samples must be
ordered anew. Fortuitously, and unlike almost all other statistical learners, analytic formulae
for computing the exact bootstrap expectations of the k-nearest neighbor learners are avail-
able (Caprile et al. 2004; Steele et al. 2003). Yet exact bagging methods for k-nearest neigh-
bor learners have not been utilized in practical applications or studied in detail, presumably
because the analytic formulae are complicated and computationally expensive in applica-
tion. The purpose of this article is to introduce computationally simple and fast formulae for
exact bagging of k-nearest neighbor learners. Additionally, two other advances involving k-
nearest neighbor learners are presented. The first advancement extends exact bagging meth-
ods from conventional bootstrap sampling (sampling n observations with replacement from
a set of n observations) to bootstrap sub-sampling schemes (with and without replacement),
and the second advancement is the development of a partially exact k-nearest neighbor re-
gression learner. This article concludes by comparing prediction error estimates among ele-
mentary and exact bagging k-nearest neighbor learners and several other ensemble methods
using a suite of publicly available data sets.

2 Notation and terminology

Let P denote a population and Z denote a sample of n observations drawn from P . An
element of P is a pair Z = (X,Y ) consisting of an input vector X = (x1, x2, . . . , xp) and
a output vector Y = (y1, y2, . . . , yc). It is assumed that each of the p input variables can
be ordered so that the distance between any two input vectors can be determined. In the
examples below for instance, all variables are quantitative and Manhattan distance was used
throughout because of its simplicity; other metrics might have been used with little practical
difference. Let X1:n = (X[1],X[2], . . . ,X[n]) denote an ordered arrangement of the sample
input vectors X1,X2, . . . ,Xn where the order is determined by the distances between X

and X1,X2, . . . ,Xn. The ordering X1:n induces an ordering on the data set Z (Bhattacharya
1974) which is denoted herein by Z1:n = (Z[1],Z[2], . . . ,Z[n]), where Z[i] = (X[i], Y[i]). The
induced ordering of the sample outputs is denoted as Y1:n = (Y[1], Y[2], . . . , Y[n]).
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The k-nearest neighbor learner is developed for two classes of output variables. The first
class are quantitative and scalar outputs. In this case, the elementary k-nearest neighbor
learner is the linear combination

η(X|Z) = wT Y1:n

where wi = k−1 if i ≤ k and wi = 0 if k < i ≤ n. The second class of output variables are
multinomial variables arising in classification problems. In this situation, P is comprised of
c disjoint classes P1, . . . , Pc and the output Y is a c-vector identifying class membership of
Z. The j th element of Y is

yj =
{

1, if Z ∈ Pj ,

0, if Z /∈ Pj .

The posterior probability of membership in class Pj is then πj = Pr(Z ∈ Pj |X) = E(yj |X).
Herein, the k-nearest neighbor learner η(X|Z) is an estimator of the posterior probabil-
ity vector π(X) = [π1(X), . . . , πc(X)]. A compact expression for η(X|Z) is developed by
forming the matrix

Y1:n
n×c

=
⎛
⎜⎝

y[1],1 · · · y[1],c
...

...

y[n],1 · · · y[n],c

⎞
⎟⎠ , (1)

where the ith row of Y1:n is the c-vector Y[i]. Then, η(X|Z) = wT Y1:n = π̂(X|Z) is the k-
nearest neighbor estimator of π(X) and π̂j (X|Z) is the proportion of the k-nearest neighbors
of Z belonging to class Pj . The usual objective is to predict the class membership of Z

from X, and so the k-nearest neighbor classifier is arg max
j

π̂j (X|Z). In case of a tie among

the largest values of π̂1(X|Z), . . . , π̂c(X|Z), the neighborhood size k may be successively
increased until the tie is broken. Alternatively, the class prediction may be randomly selected
from among the tied classes. In the examples below, ties were broken by increasing the
neighborhood size.

3 Bootstrap aggregation

Bootstrap aggregation, or bagging (Breiman 1996; Hastie et al. 2001, Chap. 8; Hall and
Samworth 2005) is an ensemble method of reducing the prediction error of a learner. Boot-
strap aggregation is carried out by drawing B bootstrap samples from the training sample Z,
constructing a new learner from each, and averaging the predictions. If B bootstrap samples
Z∗1, . . . ,Z∗B are drawn and used to construct learners η(X|Z∗1), . . . , η(X|Z∗B), then the
bagged estimator of Y is

η∗B(X|Z) = B−1
B∑

b=1

η(X|Z∗b). (2)

Let Fn denote the empirical distribution function of Z placing probability mass n−1 at
each Zi ∈ Z and 0 elsewhere, and let Z∗ denote a random sample of n observations drawn
with replacement from Fn. The exact bagging learner η∗(·|Z) is the expectation of η(·|Z∗)
over Fn. The exact bootstrap expectation of a prediction can be expressed as

η∗(X|Z) = E[η(X|Z∗)|Fn] = n−n
∑
i∈I

η(X|Zi ) (3)
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where I is the set of all n-tuples formed by choosing n integers with replacement from
{1, . . . , n} and Zi = (Zi1 , . . . ,Zin) is an n-tuple of elements drawn from Z. As the number
of elements in I is very large, it is generally not feasible to compute the exact bootstrap
expectation of a statistical learner. For this reason, the bagged learner given in formula (2)

is commonly used as an estimator of the exact bootstrap expectation. An important exception
to the general intractability of the exact bootstrap expectation are k-nearest neighbor learners
constructed with weights wi not depending on Zi for 1 ≤ i ≤ n. Remark: an example of
weights that do depend on Zi are weights computed from the distances between the target
and the neighbors of the target. For the remainder of this article, wi is a weight not depending
on Zi . The next section develops analytic formulae for the exact bootstrap expectation of a
k-nearest neighbor learner.

3.1 The exact bootstrap expectation of the k-nearest neighbor learner

Consider first prediction of a scalar output y associated with a population unit Z = (y,X).
Given a bootstrap sample Z∗ = {(y∗

1 ,X∗
1), . . . , (y

∗
n,X

∗
n)} and an input vector X, the distances

between X and X∗
i , i = 1, . . . , n induce an ordering Z∗

[1], . . . ,Z
∗
[n] on Z∗. Concurrently, the

ordering on the X∗
i ’s induces the bootstrap order statistic Y ∗

1:n = (y∗
[1], . . . , y

∗
[n]) . The exact

bootstrap expectation of a k-nearest neighbor learner η(X|Z) = wT Y1:n is

η∗(X|Z) = E(wT Y ∗
1:n|Fn) =

n∑
i=1

wiE(y∗
[i]|Fn). (4)

The only possible realization of y∗
[i] is one of y[1], . . . , y[n], and y∗

[i] will be y[j ] if and only if
X∗

[i] = X[j ] and equivalently, Z∗
[i] = Z[j ]. The bootstrap expectation of y∗

[i] is thus

E(y∗
[i]|Fn) =

n∑
j=1

Pr(Z∗
[i] = Z[j ]|Fn)y[j ].

An analytic formula for computing the bootstrap probability Pr(Z∗
[i] = Z[j ]|Fn) is obtained

by noting that the number of elements in Z∗ drawn from the set of j nearest observa-
tions {Z[1], . . . ,Z[j ]} is a binomial random variable with parameters n and j/n because
the elements of the bootstrap sample are drawn independently and with replacement from
{Z[1], . . . ,Z[n]}. Let S∗

j ∼ Bin(n, j/n) denote the number of elements in Z∗ drawn from
{Z[1], . . . ,Z[j ]}. The event Z∗

[i] = Z[j ] will occur if and only if at least i observations are
sampled from Z[1], . . . ,Z[j ] and less than i elements are sampled from Z[1], . . . ,Z[j−1].
Equivalently, Z∗

[i] = Z[j ] will occur if and only if S∗
j ≥ i and S∗

j−1 < i. Because S∗
j−1 ≥ i

implies S∗
j ≥ i,

Pr(Z∗
[i] = Z[j ]|Fn) = Pr(S∗

j ≥ i, S∗
j−1 < i)

= Pr(S∗
j ≥ i) − Pr(S∗

j−1 ≥ i). (5)

The cost of computing Pr(Z∗
[i] = Z[j ]|Fn) can be reduced by evaluating the beta cumula-

tive distribution function instead of computing and summing the 2(n−j +1) binomial prob-
abilities required of formula (5). Specifically, Pr(S∗

j ≥ i) = Fi,n−i+1(j/n), where Fα,β(x) is
the cumulative distribution function of a beta random variable with parameters α and β

evaluated at x (Mood et al. 1974). Hence,

Pr(Z∗
[i] = Z[j ]|Fn) = Fi,n−i+1(j/n) − Fi,n−i+1(j/n − 1/n), (6)
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and the expectation of the ith bootstrap order statistic is

E(y∗
[i]|Fn) =

n∑
j=1

Pr(Z∗
[i] = Z[j ]|Fn)y[j ]

=
n∑

j=1

[Fi,n−i+1(j/n) − Fi,n−i+1(j/n − 1/n)]y[j ]. (7)

While the beta cumulative distribution function does not have a general closed-form expres-
sion, numerical approximations are accurate and widely available within most statistical and
mathematical software.

Hutson and Ernst (2000) present a formula similar to (6) for the bootstrap probabil-
ity Pr(Z∗

[i] = Z[j ]|Fn), though their derivation is quite different from that presented above.
In addition, they present formulae for the exact bootstrap expectation and variance of an
L-estimator. In fact, the elementary k-nearest neighbor learner η(X|Z) = wT Y1:n is an L-
estimator, though the ordering on the vector Y1:n is not determined by y1, . . . , yn but is
instead induced by the distances between the target input X and the training sample inputs
X1, . . . ,Xn. Returning to the formulation of the exact bagging k-nearest neighbor learner,
(3) and (7) together yield

η∗(X|Z) =
n∑

j=1

y[j ]
n∑

i=1

wi[Fi,n−i+1(j/n) − Fi,n−i+1(j/n − 1/n)]. (8)

Caprile et al. (2004) and Steele et al. (2003) have derived other formulae for E[η(X|Z∗)|Fn].
The computational demands of these formulae are substantially greater than formula (8).

3.1.1 The exact bagging k-nearest neighbor classifier

Suppose that the multinomial output Y identifies the class membership of Z. Accordingly,
Y and Yi, i = 1, . . . , n are a multinomial vectors of length c. In this situation, the order
statistic induced by the distances between the target input X and the sample inputs is the
n × c matrix Y1:n set up in (1) and the k-nearest neighbor learner is an L-estimator of
π(X|Z). The exact bootstrap expectation of η(X|Z) is also an L-estimator of π(X|Z) and
can be expressed as

η∗(X|Z) = wT

1×n
E(Y1:n|Fn)

n×c

= wT PY1:n, (9)

where P denotes the n × n matrix with Pr(Z∗
[i] = Z[j ]|Fn) (formula (6)) in the ith row and

j th column. Herein, the exact bagging k-nearest neighbor classification rule assigns Z to
the class for which the estimated probability of class membership is largest; specifically,
the prediction of class membership is arg max

j
η∗

j (X|Z). This procedure coincides with the

usual voting scheme used in conventional bagging in which each bootstrap learner produces
a prediction and the class most frequently predicted among the B predictions is taken to be
the ensemble prediction. To understand why the exact and conventional algorithms coincide,
suppose that class g is most likely to be the prediction of a bootstrapped k-nearest neighbor
learner across all possible bootstrap learners η(X|Z∗). Then, class g is the most likely pre-
diction of a Monte Carlo bagged learner η(X|Z∗B ). Moreover, class g is the class with the
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maximum estimated probability of membership over Fn and hence, also the prediction of
the exact bagging k-nearest neighbor learner.

3.2 Sub-sampling

Bootstrap sub-aggregation is carried out by sampling m < n observations randomly from
Fn (Bickel et al. 1997; Bühlmann and Yu 2002; Hall and Samworth 2005). For the bagged
nearest neighbor classifier (k = 1), Biau et al. (2008) and Hall and Samworth (2005) have
presented asymptotic arguments showing that substantial reductions in prediction error are
possible under bootstrap sub-sampling. In practice, enlarging the set of candidate learners
to encompass bootstrap sub-aggregation substantially increases the computational effort of
searching for a best k-nearest neighbor learner, particularly if the bagged learners are con-
structed via a Monte Carlo algorithm. It is useful then to develop exact analytic formulae
for these learners and thereby avoid Monte Carlo simulation. This section develops analytic
formulae for computing the exact bootstrap sub-aggregated k-nearest neighbor learner.

Again, for simplicity, suppose that the output variable is scalar and quantitative and that
m < n observations are sampled randomly and with replacement from Fn. In this situation,
the m bootstrap inputs X∗

i , i = 1, . . . ,m, and the target input X induce the order statistic
Z∗

1:m = (Z∗
[1], . . . ,Z

∗
[m]). Hence, the weight vector w is also of length m and the k-nearest

neighbor learner is η(X|Z∗) = wT Y ∗
1:m. The exact bootstrap sub-aggregated k-nearest neigh-

bor learner is

η∗(X|Z) = E(wT Y ∗
1:m|Fn)

=
m∑

i=1

wi

n∑
j=1

Pr(Z∗
[i] = Z[j ]|Fn)y

∗
[i].

The event Z∗
[i] = Z[j ] differs from full bootstrap sampling only to the extent that there are

m binomial trials in which to sample from {Z[1], . . . ,Z[j ]}. Consequently, the derivation
Pr(Z∗

[i] = Z[j ]|Fn) parallels the derivation under full bootstrap sampling and leads to the
formula

Pr(Z∗
[i] = Z[j ]|Fn) = Fi,m−i+1(j/n) − Fi,m−i+1(j/n − 1/n). (10)

The exact bagging k-nearest learner can be expressed as η∗(X|Z) = wT PY1:n where Pij =
Pr(Z∗

[i] = Z[j ]|Fn), i = 1, . . . ,m and j = 1, . . . , n are defined by formula (10).
Now suppose that sampling is without replacement. If i > j or i > m, then Pr(Z∗

[i] =
Z[j ]) = 0. Suppose that j ≥ i; then Z∗

[i] = Z[j ] if and only if i − 1 observations are drawn
from {Z[1], . . . ,Z[j−1]} and m − i observations are drawn from {Z[j+1], . . . ,Z[n]}. Hence, if
j ≥ i and i ≤ m,

Pr(Z∗
[i] = Z[j ]|Fn) =

(
j−1
i−1

)(
n−j

m−i

)
(

n

m

) . (11)

Now η∗(X|Z) = wT PY1:n where the entries of P are given by formula (11).
Lastly, suppose that the output variable identifies class membership so that the matrix

form of the k-nearest neighbor learner is η(X|Z) = wT Y1:n where the n × c matrix Y1:n is
the order statistic. The exact bootstrap expectation of η(X|Z) under sub-sampling, either
with or without replacement is again η∗(X|Z) = wT PY1:n except now P is defined by either
equation (10) or (11), depending on which sampling scheme is adopted.
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3.3 k-nearest neighbor weights

Consider the elementary k-nearest neighbor learner with weights wi = k−1 if i ≤ k and
wi = 0 if i > k. The exact bootstrap expectation is

η∗(X|Z) = k−1
n∑

j=1

y[j ]
k∑

i=1

Pr(Z∗
[i] = Z[j ]|Fn), (12)

though the bootstrap probabilities Pr(Z∗
[i] = Z[j ]|Fn) depend on the method of bootstrap

sampling. From (12), it is apparent that η∗(X|Z) is a weighted mean of y[1], . . . , y[n] where
the weight associated with the j th nearest neighbor y[j ] is k−1

∑k

i=1 Pr(Z∗
[i] = Z[j ]|Fn). This

weight is the average probability that Z[j ] will be the ith nearest neighbor of Z under boot-
strap sampling, for 1 ≤ i ≤ k. These weights are of some interest as they reveal how bagging
operates and bagged k-nearest neighbor learners differ from conventional k-nearest neigh-
bor learners. Figures 1 and 2 graph the weights as a function of k and sampling scheme.
In Fig. 1, the weights are plotted against j under sampling without replacement and for a
sample size of n = 20 and k ∈ {1,3,5,8}. Figure 2 is the same as Fig. 1 except that the sam-
ple size is n = 200. The corresponding figures under sampling with replacement are omitted
because the relationships among k, sampling fraction and the weights are quite similar to
those shown in Figs.1 and 2. Figures 1 and 2 show that the weight associated with Z[j ]
depends on j , k and the bootstrap sampling scheme. For all m, k and j , the exact bagging
weights are greater than 0 and less than 1/k in contrast to the elementary k-nearest neighbor
weights which are either 0 or 1/k. Hence, bagging acts on k-nearest neighbor learners by
smoothing, and the practical effect of smoothing is to reduce the influence of Z[j ], j ≤ k and
to increase the influence of Z[j ], j > k. For fixed k, smaller sub-sampling fractions (m/n)

induce greater degrees of smoothing.
The smoothing effect of bootstrap sub-sampling implies that when Monte Carlo boot-

strap sampling is employed, small sub-sampling fractions tend to generate learners η(·|Z∗b)

that differ from the elementary learner η(·|Z) to a greater extent than bootstrap learners gen-
erated without sub-sampling (m = n). It is sometimes argued (for example, Breiman 1996)
that a superior ensemble learner is one in which the constituent learners simultaneously are
as different as possible and individually accurate. Figures 1 and 2 show that sub-sampling
does produce differences among constituent learners, however, it should be noted that the
accuracy of the constituent learners may decline substantially if n is small or if more distant
observations are of limited value for prediction. Remark: the exact bagging 1-nearest neigh-
bor weights are simply Pr(Z∗

[1] = Z[j ]|Fn), and are similar to the neighbor weights used in
a kernel density classifier with a Gaussian kernel and data-dependent width (see Hastie et
al. 2001, Chap. 6). This correspondence suggests similarities between the performance of
kernel density classifiers and exact bagging 1-nearest neighbors.

3.3.1 Asymptotic bootstrap probabilities of the 1-nearest neighbor learner

Asymptotic formulae for the bootstrap probabilities associated with the exact 1-nearest
neighbor learner are investigated in this section. These formulae provide further insight into
mechanism of bootstrap sub-sampling; moreover, asymptotic versions of the exact bagging
1-nearest neighbor learner are potentially useful base learners in the construction of ensem-
ble learners because of their simplicity and accuracy. Gertheiss and Tutz (2008) and Pančov
and Džeroski (2007) provide examples of constructing ensembles using nearest neighbors
learners.
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Fig. 1 Exact bootstrap weights for each neighbor given k ∈ {1,3,5,8}, sub-sample size m, and a training
sample size of n = 20. Note that the vertical scale differs among panels

First consider prediction of a quantitative output using the exact bagging 1-nearest neigh-
bor learner

η∗(X|Z) =
n∑

j=1

y[j ] Pr(Z∗
[1] = Z[j ]|Fn). (13)

Now consider conventional bootstrap sampling with replacement. For this case, the boot-
strap probabilities are

Pr(Z∗
[1] = Z[j ]|Fn) = Pr(S∗

j−1 = 0) − Pr(S∗
j = 0)

=
(

n − j + 1

n

)n

−
(

n − j

n

)n

, (14)
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Fig. 2 Exact bootstrap weights for the nearest 20 neighbors for k ∈ {1,3,5,8}, sub-sample size m, and a
training sample size of n = 200. Note that the vertical scale differs among panels

for j = 1, . . . , n. An asymptotic approximation to the exact bagging 1-nearest neighbor can
be found by taking the limit of the right-hand side of (14) allowing n → ∞. The exact
bootstrap expectation of the 1-nearest neighbor learner and its asymptotic equivalent are

η∗(X|Z) =
n∑

j=1

[(
n − j + 1

n

)n

−
(

n − j

n

)n]
y[j ]

≈
n∑

j=1

(e−j+1 − e−j )y[j ].

Now consider bootstrap sub-sampling with replacement where m observations are sam-
pled from Z and α = m/n denotes the sub-sampling fraction. The bootstrap probabilities
again can be expressed in terms of Pr(S∗

j = 0) and Pr(S∗
j−1 = 0) where S∗

j ∼ Bin(m, j/n)
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and S∗
j−1 ∼ Bin(m, (j − 1)/n). Then,

Pr(Z∗
[1] = Z[j ]|Fn) =

[(
n − j + 1

n

)αn

−
(

n − j

n

)αn]
, j = 1, . . . ,m,

and the asymptotic approximation of the exact bagging 1-nearest neighbor learner under
sub-sampling with replacement is η∗(X|Z) ≈ ∑n

j=1(e
−α(j−1) − e−αj )y[j ].

Lastly, consider bootstrap sub-sampling without replacement where m observations are
sampled from Z and α = m/n denotes the sub-sampling fraction. The bootstrap probabilities
are

Pr(Z∗
[1] = Z[j ]|Fn) =

(
n−j

m−1

)
(

n

m

)

= n − m

n

n − m − 1

n − 1
× · · · × n − m − j + 2

n − j + 2

m

n − j + 1
,

j = 1, . . . ,m.

With m = αn,

lim
n→∞ Pr(Z∗

[1] = Z[j ]|Fn) = α(1 − α)j−1, j = 1, . . . ,m.

The asymptotic approximation of the exact bagging 1-nearest neighbor learner under sub-
sampling without replacement is η∗(X|Z) ≈ ∑n

j=1 α(1 − α)j−1y[j ].
The effect of sampling fraction α on the asymptotic exact bagging 1-nearest neighbor is

revealed by plotting the bootstrap weights Pr(Z∗
[1] = Z[j ]|Fn) against α. Figure 3 shows the

bootstrap weights for the 6 nearest neighbors under sampling with and without replacement.
Differences in bootstrap weights between sampling scheme are small except when the sam-
pling fraction is greater than 0.5, and then the largest differences occur with the first and
second nearest neighbors. Consider the bootstrap weights for the nearest neighbor Z[1]. As
the sampling fraction decreases from 1 towards 0, the weights of decrease monotonically
under both sampling schemes. In contrast, the bootstrap weights for neighbors Z[2], . . . ,Z[6]
increase and then decay towards zero as α approaches zero. This decay and convergence to-
wards zero for all bootstrap weights as α → 0 occurs because limα→0 Pr(Z∗

[1] = Z[j ]|Fn) = 0
and limα→0 Pr(Z∗

[1] = Z[j ]|Fn)/Pr(Z∗
[1] = Z[j−1]|Fn) = 1 for j ≥ 2 under both sampling

schemes.

4 k-nearest neighbor regression learners

Suppose that the output variable y is quantitative and its expectation is a linear function of
the concomitant input vector X. A local regression approach via k-nearest neighbor regres-
sion (Altman 1992; Cleveland and Devlin 1988; Loader 1999) may be useful if the linear
function varies over the input space instead of being globally constant. A varying linear func-
tion is accommodated within the k-nearest neighbor framework as follows. Let Z0 denote
the target and suppose that E(y0|X0) = XT

0 β0 where β0 is an unknown vector of coefficients.
Suppose further that the locally linear model E(y[j ]|X[j ]) = XT

[j ]β0 holds for j = 1, . . . , k

where {Z[1], . . . ,Z[k]} are the k-nearest neighbors of Z0. In principle, a linear model may be
fit using the k nearest neighbors and a prediction computed using the fitted model which im-
proves on the conventional k-nearest neighbor prediction. Though the locally linear model
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Fig. 3 Asymptotic weights Pr(Z∗[1] = Z[j ]|Fn) as a function of the sampling fraction for neighbors
j = 1, . . . ,6 for the asymptotic exact bootstrap 1-nearest neighbor learner when sampling with and with-
out replacement

is somewhat contrived, there are situations in which the model is approximately correct for
prediction of the intended target inputs. For example, the locally linear model is correct if a
global linear model is correct though the k-nearest neighbor regression learner is not optimal
by the least squares criterion. Another example is the situation in which the relationship be-
tween one or more input variables and the expected response variable is continuous, though
nonlinear. Then, restricting the inputs to the nearest k-neighbors may yield a linear approxi-
mation of the true model that is reasonably accurate in a local neighborhood of the input X.

To proceed, let ψ0(Z) denote the indicator function of the event Z ∈ {Z[1], . . . ,Z[k]} and
� denote a diagonal matrix with diagonal [ψ0(Z1), . . . ,ψ0(Zn)]. Also, let X = (Xij ) denote
the n × p matrix constructed from X1, . . . ,Xn, and let Y = (y1, . . . , yn)

T denote the vector
of training sample outputs. The least squares estimator of β0 is obtained by minimizing the
objective function

S(β0|Z) = (Y − Xβ0)
T �(Y − Xβ0) (15)
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with respect to β0. Provided that XT �X is nonsingular and the locally linear model
E(y[j ]|X[j ]) = XT

[j ]β0 j = 1, . . . , k, is correct, then the least squares estimator of β0 is β̂0 =
(XT �X)−1XT �Y . The k-nearest neighbor regression learner predicts y0 by η(X0|Z) =
XT

0 β̂0. When k is small, the variance of β̂0 may be large and the learner unstable; worse,
when k ≈ p, XT �X often will be ill-conditioned or singular. Moreover, the training sample
inputs X[1], . . . ,X[k] tend to be close to the mean vector k−1

∑k

i=1 X[i] by virtue of being
close to X, and this contributes to the instability of the learner. For more than a few of
the comparison data sets discussed below, ill-conditioning was a problem for k ≤ 20. Two
different modifications of the k-nearest neighbor regression learner aimed at alleviating ill-
conditioning and reducing instability follow.

Ridge regression, or more generally, regularization, is an effective method for reducing
instability and accommodating less-than-full rank design matrices (Friedman 1989; Hastie
et al. 2001; Hoerl and Kennard 1970; Loh 1995). The ridge regression estimator replaces
XT X with XT X + λI where λ > 0 is chosen to insure that the determinant of XT X + λI
is non-zero. Relative to the least squares estimator, the ridge regression tends to shrink the
Euclidean norm of β̃ = (XT X + λI)−1XT Y towards 0, and the effect on the learner is to
reduce instability. A regularized local estimator β̃0 = (XT �X + 10−5I)−1XT �Y was used
in the study discussed below.

There is some hope in substantively improving k-nearest neighbor regression learners
by exact bagging because of their instability problems. However, note that the k-nearest
neighbor regression learner can be written as η(X|Z) = aY1:n with ai = XT (XT �X)−1XT �i

where �i is the ith column of � . Though the k-nearest neighbor regression learner is a linear
combination of Y1:n, this learner does not satisfy the conditions necessary for E(aY ∗

1:n|Fn) =
aE(Y ∗

1:n|Fi) because a is not a fixed vector but instead a function of Z1, . . . ,Zn. Conse-
quently, the exact bootstrap expectation of the k-nearest neighbor regression learner does
not have a simple closed form. Therefore, an alternate approach is pursued in which the es-
timator of β0 is chosen to minimize the exact bootstrap expectation of the objective function
E[S(β0|Z∗)|Fn]. The resulting learner is referred to as a partially exact bootstrap k-nearest
neighbor regression learner. Theorem 1 identifies the estimator of β0.

Theorem 1 If X is full rank, then β∗
0 = E(X∗T �∗

0 X∗|Fn)
−1E(X∗T �∗

0Y
∗|Fn) minimizes

E[S(β0|Z∗)|Fn] = E{(Y ∗ − X∗β0)
T �∗

0(Y
∗ − X∗β0)|Fn}.

Proof The order of differentiation and integration can be reversed when differentiating
E[S(β0|Z∗)|Fn] with respect to β0 because S(β0|Z∗) [see (15)] is a continuous function
of β0 and Fn is a discrete distribution function with at most nn points with non-zero proba-
bility. Hence

∂E[S(β0|Z∗)|Fn]
∂β0

= − 2E
[
X∗T �∗

0(Y
∗ − X∗β0)|Fn

]
. (16)

Setting the vector of partial derivatives equal to 0 yields the normal equations E(X∗T �∗
0X∗|

Fn) = E(X∗T �∗
0Y

∗|Fn)β0. Suppose now that the n × p design matrix X is full rank. Theo-
rem 2 shows that E(X∗T �∗

0X∗|Fn) is positive definite and consequently the unique solution
to the normal equations is

β∗
0 = E(X∗T �∗

0X∗|Fn)
−1E(X∗T �∗

0Y
∗|Fn). (17)
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Furthermore, since E(X∗T �∗
0X∗|Fn) is positive definite,

∂2E[S(β0|Z∗)|Fn]
∂β∂βT

= −E(X∗T �∗
0X∗|Fn) (18)

is negative definite and it follows that β∗
0 minimizes E[S(β0|Z∗)|Fn]. �

Theorem 2 establishes that E(X∗T �∗
0X∗|Fn)

−1 and E(X∗T �∗
0Y

∗|Fn) are computationally
simple.

Theorem 2 Without loss of generality, assume that the rows of X, Y , and � have been
arranged in ascending order according to the distances between X0 and X1, . . . ,Xn. Let
A denote a diagonal matrix such that the j th diagonal element is

∑k

i=1 Pr(Z∗
[i] = Z[j ]|Fn).

Then, E(X∗T �∗Y ∗|Fn) = XT AY and E(X∗T �∗
0X∗|Fn) = XT AX. Furthermore, XT AX is

full rank and β∗
0 = (XT AX)−1XT AY .

Proof Let Xj = (x1,j , . . . , xn,j )
T denote the j th column of X. Note that the r th diagonal

element of � indicates the event {r ≤ k}. Then, the i, j th element of E(X∗T �∗
0X∗|Fn) is

E(X∗
i
T �∗

0X∗
j |Fn) =

k∑
r=1

E(x∗
[r],ix

∗
[r],j |Fn)

=
k∑

r=1

n∑
s=1

x[s],ix[s],j Pr(Z∗
[r] = Z[s]|Fn)

=
n∑

s=1

x[s],ix[s],j
k∑

r=1

Pr(Z∗
[r] = Z[s]|Fn)

= XT
i AXj,

because A is diagonal and the sth diagonal element of A is defined to be
∑k

r=1 Pr(Z∗
[r] =

Z[s]|Fn). Hence, E(X∗T �∗
0X∗|Fn) = XT AX.

The calculation of E(X∗T �∗
0Y

∗|Fn)
T = [E(X∗

1
T �∗

0Y
∗|Fn), . . . ,E(X∗

p
T �∗

0Y
∗|Fn)] pro-

ceeds in the same fashion. The j th element is

E(X∗
j
T �∗

0Y
∗|Fn) =

k∑
r=1

E(x∗
[r],j y

∗
[r]|Fn)

=
n∑

s=1

x[s],j y[s]
k∑

r=1

Pr(Z∗
[r] = Z[s]|Fn)

= XT
j AY.

Thus, E(X∗T �∗
0Y

∗|Fn) = XT AY.

To determine the rank of XT AX under the assumption that X is full rank, note that A
is full rank because the diagonal elements of A are all positive. Hence, rank(XT AX) =
rank(XT X). Thus, XT AX is full rank and nonsingular. �
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In principle, replacing XT �X by E(X∗T �∗
0X∗|Fn) = XT AX will tend to reduce the vari-

ance of the estimator of β0 and improve stability. However, in applications XT AX is some-
times ill-conditioned when k of the same order as p; for this reason, in the examples dis-
cussed below a regularized version of β∗

0 given by (XT AX + 10−5I)−1XT AY was used.

5 Comparisons of statistical learners

The performance of k-nearest neighbor and related learners are compared using data sets
available from the UCI data repository and previously used by Breiman (2001) in com-
parisons of random forests, Adaboost, and adaptive bagging. Tables 1 and 2 provide a
brief summary of the data sets and Breiman (2001) and provides specifics regarding the
learners. In the case of a quantitative output variable, cross-validation estimates of mean
squared error were obtained by comparing predictions η(Xi |Z−i ) to yi , where Z−i is a train-
ing set not containing yi . For categorical output variables, prediction error was estimated
by the percentage of test targets incorrectly predicted by η(Xi |Z−i ). For most examples,
10-fold cross-validation was carried out by randomly partitioning a set of n observations

Table 1 Summaries and cross-validation details for data sets involving categorical output variables

Set Number of Training Repetitions Number of Number of

observations (n) set size inputs classes (c)

Breast 699 [0.9n] 100 9 2

Diabetes 768 [0.9n] 100 8 2

Ecoli 336 [0.9n] 100 7 8

Glass 214 [0.9n] 100 9 6

Image 2310 [0.9n] 100 19 7

Ionosphere 315 [0.9n] 100 34 2

Satellite image 6435 4435 1 36 6

Sonar 208 [0.9n] 100 60 2

Vehicle 846 [0.9n] 100 18 4

Vowel 990 [0.9n] 100 10 11

Table 2 Summaries and cross-validation details for data sets involving quantitative output variables

Set Number of Training Repetitions Number of

observations (n) set size inputs (p)

Abalone 4177 [0.75n] 10 8

Boston housing 506 [0.9n] 100 12

Friedman #1 2200 200 1 10

Friedman #2 2200 200 1 4

Friedman #3 2200 200 1 4

Ozone 330 [0.9n] 100 8

Servo 167 [0.9n] 100 4
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as a training set of [0.9n] observations and a test set of n − [0.9n] observations. Cross-
validation was repeated (usually 100 times) and the estimates averaged. Following Breiman
(2001), 10 repetitions of 4-fold cross-validation were used with the Abalone data set. The
satellite image data set had been previously partitioned as a training set of 4435 obser-
vations and a test set of 2000 observations and this scheme was adopted for my compar-
isons. Error estimates for the synthetic data sets Friedman #1,#2 and #3 were obtained
by generating independent training sets of 200 observations and test sets of 2000 obser-
vations. Generally, the within-sample standard errors of the estimates are negligible by
virtue of averaging multiple cross-validation estimates. In other words, further repetitions
of the algorithm will produce no meaningful changes in the error estimates. This does
not imply that the addition of new observations to the data sets, or simply a set of new
test observations will yield the same estimates; instead, the error estimates presented be-
low are conditional on the sample and formal statistical inferences drawn from these com-
parisons are necessarily limited to the samples themselves. Efron and Tibshirani (1997)
provide a detailed discussion of the problem of estimating the variance of error estima-
tors.

The k-nearest neighbor learners were constructed for k ∈ {1,5,10,20,50}. Additional
values of k = 70 and 100 were used with Abalone, Boston housing and Ozone data sets after
observing that small values of estimated prediction error were associated with larger values
of k. The exact bagging k-nearest neighbor and partially exact bagging k-nearest neigh-
bor regression learners were constructed under sub-sampling with and without replacement
using sampling fractions α ∈ {0.75,0.5,0.25}.

Tables 3 and 4 show the prediction error estimates for the categorical and quantitative
output variable data sets respectively. Estimates for the elementary and exact bagging k-
nearest neighbor learners and the regularized k-nearest neighbor regression and partially ex-
act k-nearest neighbor regression learner are reported as the smallest value over k; estimates
for the exact bagging k-nearest neighbor and partially exact k-nearest neighbor regression
learners using sub-sampling are also reported as the smallest estimate over k and α. Despite
the computational simplicity of the k-nearest neighbor learners, the error estimates are not
substantially worse than the comparison learners except for the Ionosphere and Servo data
sets, and in several instances (Ozone and Vowel), the k-nearest neighbor learners produced

Table 3 Cross-validation estimates of prediction error. For each of the k-nearest neighbor methods, estimates
were computed for k ∈ {1,5,10,20,50} and the minimum estimate among these 5 estimates is presented
below. Estimates for the Adaboost and Random Forest learners were extracted from Breiman (2001)

Set k-NN Exact Sub-sampling Adaboost Random

bagging with without Forest

Breast 2.94 2.94 3.04 2.99 3.2 3.1

Diabetes 23.2 23.5 23.2 23.4 26.6 23.0

Ecoli 13.0 12.9 12.9 13.7 14.8 12.9

Glass 21.9 21.9 21.6 21.6 22.0 24.4

Image 3.46 3.46 3.49 3.49 1.6 1.6

Ionosphere 13.0 13.0 13.5 13.5 6.5 5.5

Satellite image 9.14 9.14 9.21 9.28 8.8 9.1

Sonar 13.0 13.0 13.0 13.0 15.6 13.6

Vehicle 27.9 27.8 27.4 27.5 23.2 23.1

Vowel 1.04 1.04 1.21 1.21 4.1 3.3
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Table 4 Cross-validation estimates of prediction error. For each of the k-nearest neighbor methods, estimates
were computed for k ∈ {1,5,10,20,50}. The minimum prediction error estimates among all values of k

are presented below. Estimates for the adaptive bagging and Random Forest learners were extracted from
Breiman (2001)

Set k-NN Exact Reg. k-NN PEB k-NN regression Adaptive Random

bagging regression none with without bagging Forest

Abalone 4.99 4.95 5.20 5.05 4.95 4.45 4.9 4.6

Boston housing 20.9 16.9 12.8 16.0 12.7 12.8 9.7 10.2

Ozone 10.2 10.2 9.11 9.12 10.0 8.89 17.8 16.3

Servo 0.591 0.572 0.491 0.414 0.541 0.413 0.251 0.246

Friedman #1 9.07 8.68 6.24 6.16 8.58 6.13 4.1 5.7

Friedman #2 × 103 33.3 32.6 20.4 20.4 33.5 20.1 21.5 19.6

Friedman #3 × 10−3 39.4 38.2 32.9 31.8 30.8 30.5 24.8 21.6

consistently smaller error estimates than the competitors. Table 3 also shows that exact bag-
ging k-nearest neighbor learners, including those that utilize sub-sampling appear not to be
distinguishable from the elementary k-nearest neighbor learner on the basis of prediction
error. Table 4 shows that the error estimates for k-nearest neighbor learners (elementary
and exact bagging) were always greater than those obtained from the regularized k-nearest
neighbor regression learners. Bagging (exact and partially exact) was largely ineffectual as
the error estimates do not consistently favor bagging. Similarly, the effectiveness of sub-
sampling varied without consistency among data sets. The dearth of experimental evidence
of an accuracy advantage to bagging is attributable to several factors, in particular, the adap-
tive choice of k by cross-validation. Later in this article, comparisons are made between
learners with k = 1 fixed which show large differences in estimated accuracy and favor-
ing exact bagging versions of the 1-nearest learners. Additionally, the 17 data sets were
selected because they had been used by Breiman (2001) to illustrate the performance of ran-
dom forest learners and do not necessarily reflect the performance of these learners in other
situations.

Another look at exact bagging compares error estimates produced by the elementary
and exact bagging versions of the k-nearest neighbor learners across a range of values for k.
Figures 4 and 5 show that cross-validation estimates for the exact bagging and partially exact
bagging learners are usually less than or nearly equal to corresponding learner constructed
without bagging. These data indicate that for a fixed choice of k, exact bagging tends to
improve on the elementary k-nearest neighbor learner. However, when looking over a range
of values for k which encompass values that yield near-optimal values of cross-validation
estimates of error, then the differences in prediction error largely disappear.

5.1 Performance of the asymptotic exact bagging 1-nearest neighbor learner

The asymptotic exact bagging 1-nearest neighbor learner is compared to several elementary
k-nearest neighbor learners in this section. In this comparison, no effort is directed towards
selecting apparent optimal values of k or sub-sampling fractions α. Instead, three values
of k (1,5 and 20) were used as are three sub-sampling fractions (α ∈ {0.25,0.5,1}). For
quantitative output variables, Table 5 shows that the asymptotic approximation of the exact
bagging 1-nearest neighbor under full sampling with replacement (α = 1) yields consistently
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Fig. 4 Prediction error produced by the exact bagging and elementary k-nearest neighbor learners plotted
against k

and substantial reductions in estimated prediction error in comparison to the elementary 1-
nearest neighbor. In addition, the asymptotic approximation of the exact bagging 1-nearest
neighbor under sub-sampling with or without replacement produced additional reductions
in estimated error. For example, the estimated prediction error of the sub-sampling versions
of the asymptotic exact bagging learners was less than 60% of the estimated error of the
elementary learner for the Ozone, Servo, and Friedman #1 data sets and less than 66% for
Friedman #2 and #3. Comparing sampling strategies reveals less consistent differences in
estimated prediction error between α = 0.5 and α = 0.25, though, on balance, α = 0.25
yielded smaller estimated error. In summary, the examples suggest that the asymptotic exact
bagging 1-nearest neighbor learner has the potential for replacing the elementary 1-nearest
neighbor learner in applications in which tuning k is not feasible such as constructing ensem-
ble learners from a large collection of simple base learners. These results suggest ensemble
strategy in which some or all of the base learners are asymptotic exact bagging 1-nearest
neighbor learners using randomly sampled values of α.
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Fig. 5 Prediction error produced by the partially exact bagging and regularized k-nearest neighbor regression
learners plotted against k

Elementary k-nearest neighbor learners and asymptotic exact bagging 1-nearest neigh-
bor learners under sampling with and without replacement are compared for prediction of
categorical outputs in Table 6. The comparison differs slightly with the comparison of quan-
titative outputs shown in Table 5, as the sampling fractions were selected to be α = 1/2 and
1/4 when sampling with replacement and 1/3 and 1/6 when sampling without replacement.
Larger values of α produce weights for the nearest neighbor that lead to the same learner as
the elementary 1-nearest neighbor because the output values are limited to 0 or 1. For ex-
ample, when sampling without replacement with α = 0.5, the weight assigned to the nearest
neighbor Y[1] is 0.5 and when sampling with replacement and using α = 1, the weight is
0.632; hence, the predictions are always the same as the class membership of Z[1]. Table 6
shows that for these 10 classification problems, sub-sampling tends to yield smaller esti-
mates of prediction error provided that the best choice of k for the elementary k-nearest
neighbor is greater than 1. When the smallest cross-validation estimates of error for the
elementary k-nearest neighbor occur with k = 1, then all other learners produce larger es-
timates of prediction error. This result is consistent with Biau et al. (2008) who show that



Mach Learn (2009) 74: 235–255 253

Table 5 Cross-validation estimates of prediction error for the elementary k-nearest neighbor learner and the
asymptotic exact bagging 1-nearest neighbor. Sampling fractions for the asymptotic exact bagging learner are
denoted by α

Set Elementary k-NN Asymptotic exact bagging 1-NN

With replacement Without rep.

k = 1 k = 5 k = 20 α = 1 α = 1/2 α = 1/4 α = 1/3 α = 1/6

Abalone 8.62 5.29 5.00 6.38 5.48 5.05 5.33 4.97

Boston housing 23.0 23.0 26.1 19.2 19.3 20.7 17.9 20.6

Ozone 18.2 11.0 10.4 12.6 10.8 10.1 10.6 10.1

Servo 0.938 0.635 1.06 0.767 0.654 0.711 0.548 0.707

Friedman #1 17.8 9.67 11.3 10.8 9.06 8.92 9.17 9.38

Friedman #2 × 103 65.7 35.5 45.3 44.3 36.9 35.2 34.9 35.6

Friedman #3 × 10−3 63.9 36.5 45.6 43.2 36.3 34.9 35.4 36.1

Table 6 Cross-validation estimates of prediction error for the elementary k-nearest neighbor learner and the
asymptotic exact bagging 1-nearest neighbor. Sampling fractions for the asymptotic exact bagging learner are
denoted by α

Set Elementary k-NN Asymptotic exact bagging 1-NN

With replacement Without rep.

k = 1 k = 5 k = 20 α = 1/2 α = 1/4 α = 1/3 α = 1/6

Breast 4.46 3.25 3.106 3.62 3.22 3.38 3.18

Diabetes 31.4 26.0 24.3 27.5 25.2 27.1 24.9

Ecoli 19.3 14.5 15.1 15.2 13.4 14.2 13.2

Glass 21.9 23.9 33.9 23.1 24.5 22.9 27.0

Image 3.48 5.69 8.14 4.00 4.95 4.31 5.48

Ionosphere 13.6 15.9 16.1 14.9 16.5 15.1 17.1

Satellite image 27.7 27.9 27.6 27.9 28.0 27.9 28.0

Sonar 13.3 18.7 28.5 14.6 16.8 15.0 19.1

Vehicle 13.1 18.7 28.4 14.6 16.9 14.4 19.4

Vowel 1.27 6.62 13.0 2.42 3.82 2.79 5.46

error rate of the bagged 1-nearest neighbor converges to the error rate of the Bayes classifier
provided the sub-sampling fraction is sufficiently small.

6 Discussion

A complete understanding of why bagging works has been elusive. Studies of bag-
ging tend to be either asymptotic in nature, concentrating on bias and variance (e.g.,
Bühlmann and Yu 2002; Friedman and Hall 2007), and prediction error (Hall and Sam-
worth 2005), or empirical comparisons of bagging performance (Bauer and Kohavi 1999;
Maclin and Opitz 1997). A recurrent theme of these studies is that prediction error can be de-
composed into variance and bias components, and bagging success is largely attributable to
variance reduction. The effect of bagging on bias is uncertain, as a number of contradictory
findings have been reported. It has also been argued that bagging success is attributable, at
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least in part, to smoothing (Bühlmann and Yu 2002) or equalization of training observation
influence (Grandvalet 2004).

The elementary k-nearest neighbor is distinguished by the minimal extent to which the
learner varies with small perturbations in the data set, a property referred to as stability
(Bühlmann and Yu 2002; Buja and Stuetzle 2006). Generally, the k-nearest neighbor learner
is stable because a training observation Zi affects a prediction only when Zi is one of the k

nearest neighbors of the target observations. Usually k is much smaller than the number of
training observations so that the influence of Zi is limited to a local neighborhood about Zi .
When k is relatively large, then each of the k neighbors has an equal (and small) contribution
towards a prediction. Operationally, bagging forces the elementary weights wi ∈ {0, k−1}
defining the learner η(X|Z) = wT Y[1:n] towards n−1. The degree of change is necessarily
small when k is large, and when k is small, relatively few weights are substantively changed.
Consequently, the predictions of the bagged k-nearest neighbor learner tend to be similar to
those of its conventional counterpart.

Acknowledgements I thank the reviewers for comments and suggestions that greatly improved the article
and Dave Patterson for many insightful discussions on the subjects of exact bagging and statistical learners.
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